

DR. MED. MILO HALABI
MAG. MAG. RER. NAT. FRANZ ZWINGLER

Bakteriologische Analyse Prot. Nr. 2403081-01

Entnahmestelle:	Auslauf Musikraum, linkes Waschbecken, Keller VS St. Aegidi					
Auftraggeber:	Gemeinde St. Aegic	Gemeinde St. Aegidi St. Aegidi 10, 4725 St. Aegidi				
Anlagenbezeichnung:	Wasserversorgung	Wasserversorgung kommunale Wasserversorgung, St. Aegidi 10, 4725 St. Aegidi				
Protokoll Nr.:	2403081-01	2403081-01 Entnahmestellen Nr.: 03				
Entnommen am:	16.04.2024 09:57	Entnommen von:	ITU Obszarska-Burkot Angelika/ Institut			
Eingegangen am:	16.04.2024 15:44	Auftrag:	Untersuchung gem. TWVO			
Beginn Analyse:	16.04.2024 15:50	Ende Analyse:	19.04.2024 09:01			
Analysenumfang:	Volluntersuchung - ohne Richtdosis/Tritium/Radon, Perfluorierte Alkysubstanzen (PFAS)					

Misch- oder Wechselwasser:	Ja
Lässt Rückschluss auf die Beschaffenheit beim Verbraucher zu:	Ja
Lässt Rückschluss auf die Grundwasserbeschaffenheit zu:	Nein
Wasseraufbereitungsverfahren: Entsäuerung	
Probenahmeverfahren: ÖNORM EN ISO 19458:2006, Zweck a	

Parameter	Einheit	Parameterwert/ Indikatorenwert	Messwert	Methode
Aussehen (vor Ort)		7.00	ohne Besonderheit	ÖNORM M 6620:2012
Geruch (vor Ort)			ohne Besonderheiten	ÖNORM M 6620:2012
Geschmack (vor Ort)			ohne Besonderheiten	ÖNORM M 6620:2012
Koloniezahl bei 22°C	KBE/ml	100	nicht nachweisbar	ÖNÖRM EN ISO 6222:1999
Koloniezahl bei 36°C	KBE/ml	20	4	ÖNORM EN ISO 6222:1999
Escherichia coli	KBE/100ml	nicht nachweisbar	nicht nachweisbar	ÖNORM EN ISO 9308-1:2017
Coliforme Bakterien	KBE/100ml	nicht nachweisbar	nicht nachweisbar	ÖNORM EN ISO 9308-1:2017
Enterokokken	KBE/100ml	nicht nachweisbar	nicht nachweisbar	DIN EN ISO 7899-2:2000
Pseudomonas aeruginosa	KBE/100ml	nicht nachweisbar	nicht nachweisbar	ÖNORM EN ISO 16266:2008

Allgemeine Hinweise:

- KBE = Koloniebildende Einheiten
- Parameterwert entspricht It. Trinkwasserverordnung einem Grenzwert, der Indikatorwert entspricht einem Richtwert.

- "nicht nachweisbar" entspricht der Bestimmungsgrenze kleiner gleich 4 KBE

- Ein allfällig zum Einsatz kommender Probenahmeplan wird gemäß DOK_Probenahmepläne umgesetzt.
- Die Beurteilung der Ergebnisse bezieht sich nur auf die vorliegenden Parameter. Eine Vervielfältigung ist nur mit Zustimmung der Prüf- und Inspektionsstelle erlaubt.

- Für überbrachte Proben gilt, dass die Proben wie erhalten analysiert werden.

- Messunsicherheit: es wird gemäß ILAC G8 4.2.1 die binäre Entscheidungsregel angewendet.

KBE bei 22 °C/36 °C: Bei desinfiziertem Wasser unmittelbar nach Desinfektion (UV, Chlor, Ozon) gilt abweichend zu oben angegebenem Indikatorwert: 10 KBE/ml bei 22 °C und 36 °C

Die Bestätigung von Pseudomonas aeruginosa kann auch laut "AA Pseudomonas" erfolgen.

DR. MED. MILO HALABI MAG. MAG. RER. NAT. FRANZ ZWINGLER

Entnahmestelle:	Auslauf Musikraum, linkes Waschbecken, Keller VS St. Aegidi					
Auftraggeber:	Gemeinde St. Aegid	Gemeinde St. Aegidi St. Aegidi 10, 4725 St. Aegidi				
Anlagenbezeichnung:	Wasserversorgung	Wasserversorgung kommunale Wasserversorgung, St. Aegidi 10, 4725 St. Aegidi				
Protokoll Nr.:	2403081-01	2403081-01 Entnahmestellen Nr.: 03				
Entnommen am:	16.04.2024 09:57	Entnommen von:	ITU Obszarska-Burkot Angelika/ Institut			
Eingegangen am:	16.04.2024 15:44	Auftrag:	Untersuchung gem. TWVO			
Beginn Analyse:	16.04.2024 09:58	Ende Analyse:	23.05.2024 07:56			
Analysenumfang	Volluntersuchung - o	Volluntersuchung - ohne Richtdosis/Tritium/Radon, Perfluorierte Alkysubstanzen (PFAS)				

Misch- oder Wechselwasser:	Ja	
Lässt Rückschluss auf die Besc	haffenheit beim Verbraucher zu:	Ja
Lässt Rückschluss auf die Grundwasserbeschaffenheit zu:		
Wasseraufbereitungsverfahren: Entsäuerung		
Probenahmeverfahren:	ÖNORM ISO 5667-5:2015	

Parameter	Einheit	Parameterwert/ Indikatorenwert	Messwert	Methode
Wassertemperatur (vor Ort)	°C	25	11,0	ÖNORM M 6616:1994
pH-Wert (vor Ort)	рН	6,5 - 9,5	7,3	ÖNORM EN ISO 10523:2012
Elektrische Leitfähigkeit bei 20°C (vor Ort)	μS/cm	2500	175	DIN EN 27888:1993
Säurekapazität bis pH 4,3	mmol/l		1,830	DIN 38409-7:2005 *
Gesamthärte (Wasserhärte)	°dH		4,94	DIN 38409-6:1996 *
Gesamthärte	mmol/l		0,881	DÍN 38409-6:1996 *
Carbonathärte	°dH		4,94	DIN 38409-7:2005 *
Hydrogencarbonat	mg/l		112	DIN 38409-7:2005 *
Oxidierbarkeit Permanganatindex O2	mg/l	5,0	<0,50	ÖNORM EN ISO 8467:1996
Ammonium	mg/l	0,50	<0,06	DIN 38406-5:1983
Nitrit	mg/l	0,1	<0,013	ÖNROM EN 26777:1993
Nitrat	mg/l	50	9,9	DIN EN ISO 10304-1:2009 *
Natrium	mg/l	200	5,0	DIN EN ISO 14911:1999 *
Kalium	mg/l	50	<1	DIN EN ISO 14911:1999 *
Magnesium	mg/l	150	3,2	DIN EN ISO 14911:1999 *
Calcium	mg/l	400	30	DIN EN ISO 14911:1999 *
Eisen	mg/l	0,2	<0,027	DIN 38406-1:1983
Mangan	mg/l	0,05	<0,010	DIN 38406-2:1983
Chlorid	mg/l	200	1,61	DIN EN ISO 10304-1:2009 *
Sulfat	mg/l	250	7,2	DIN EN ISO 10304-1:2009 *
Spektrales Absorptionsmaß bei 436 nm	m-1	0,50	<0,1	DIN 38404-3:2005 *
Trübung 1	NTU	d (<0,1	EN ISO 7027-1:2016 ~

DR. MED. MILO HALABI MAG. MAG. RER. NAT. FRANZ ZWINGLER

Cyanid, gesamt	μg/l	50	<10	ÖNORM M 6287:1989 ~
Bromat	µg/l	10	<0,003	EN ISO 15061:2001 ~
Aluminium	mg/l	0,20	<0,05	EN ISO 11885:2009 ~
Fluorid	mg/l	1,5	<0,15	EN ISO 10304-1:2009 ~
Arsen	µg/l	10	<2	EN ISO 17294-2:2016 ~
Antimon	μg/l	5,0	<2	EN ISO 17294-2:2016 ~
Blei	µg/l	, 10	<2	EN ISO 17294-2:2016 ~
Bor	mg/l	1,0 %	<0,05	EN ISO 17294-2:2016 ~
Cadmium	µg/l	5,0	<1	EN ISO 17294-2:2016 ~
Chrom	µg/l	50	<5	EN ISO 17294-2:2016 ~
Kupfer	mg/l	2,0	<0,005	EN ISO 17294-2:2016 ~
Nickel	μg/l	20	<5	EN ISO 17294-2:2016 ~
Quecksilber	µg/l	1,0	<0,2	EN ISO 17294-2:2016 ~
Selen	µg/l	10	<2	EN ISO 17294-2:2016 ~
Uran	μg/l	15	<1	EN ISO 17294-2:2016 ~
Benzol	μg/l	1,0	<0,3	DIN 38407-43:2014 ~
Acrylamid	μg/L	0,10	< 0,05	DIN EN 38413-6*
Epichlorhydrin	μg/L	0,10	< 0,05	DIN EN 14207*
Vinylchlorid	µg/l	0,50	<0,15	DIN 38407-43:2014 ~
1,2-Dichlorethan	μg/l	3,0	<0,2	DIN 38407-43:2014 ~
SummeTetrachlorethen und Trichlorethen	µg/l	10	<0,3	DIN 38407-43:2014 ~
Tetrachlorethen	μg/l	. '- ;	<0,3	DIN 38407-43:2014 ~
Trichlorethen	µg/l		<0,3	DIN 38407-43:2014 ~
Summe Trihalomethane	μg/l	30	<0,3	DIN 38407-43:2014 ~
Trichlormethan/Chloroform	μg/l		<0,3	DIN 38407-43:2014 ~
Bromdichlormethan	µg/l		<0,3	DIN 38407-43:2014 ~
Dibromchlormethan	µg/l		<0,3	DIN 38407-43:2014 ~
Tribrommethan/Bromoform	μg/l	0	<0,3	DIN 38407-43:2014 ~
Benzo(a)pyren	µg/L	0,010	<0,003	DIN 38407-39:2011 ~
Benzo(b)fluoranthen	μg/L		<0,005	DIN 38407-39:2011 ~
Benzo(k)fluoranthen	μg/L		<0,005	DIN 38407-39:2011 ~
Benzo(ghi)perylen	µg/L		<0,005	DIN 38407-39:2011 ~
Inden(1,2,3-cd)pyren	µg/L	ww/	<0,005	DIN 38407-39:2011 ~
Summe PAK gemäß TWV	μg/L	0,10	<0,1	DIN 38407-39:2011 ~
(2,4-Dichlorphenoxy)-essigsäure(2,4-D einschließlich ihrer Salze und Ester	µg/l	0,10	<0,03	DIN 38407-35:2010 ~
Alachlor	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Aldrin	µg/l	0,03	<0,009	EN ISO 6468:1996 ~
Atrazin	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Azoxystrobin	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
Bentazon	µg/l	0,10	<0,03	DIN 38407-35:2010 ~
Bromacil	μg/l	0,10	<0,03	DIN 38407-36:2014 ~

DR. MED. MILO HALABI MAG. MAG. RER. NAT. FRANZ ZWINGLER

Chloridazon	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Clopyralid	µg/l	0,10	<0,03	DIN 38407-35:2010 ~
Clothianidin	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
2-(2,4-Dichlorphenoxy)-propionsäure (Dichlorprop, 2,4-DP) einschließlich ihrer Salze und Ester	µg/l	0,10	<0,03	DIN 38407-35:2010 ~
Dimethachlor	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
Dimethenamid-P	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
Dicamba	µg/l	0,10	<0,03	DIN 38407-35:2010 ~
Dieldrin	µg/L	0,03	<0,009	EN ISO 6468:1996 ~
Diuron	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
Ethofumesat	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
Flufenacet	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
Gluphosinat	µg/l	0,10	<0,03	ISO 21458:2008 ~
Glyphosat	μg/l	0,10	<0,03	ISO 21458:2008 ~
Heptachlor	µg/l	0,03	<0,009	EN ISO 6468:1996 ~
Heptachlorepoxid	µg/L	0,03	<0,009	EN ISO 6468:1996 ~
Hexazinon	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
midacloprid	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
odsulfuron-methyl	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
soproturon	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
(4-Chlor-2-methylphenoxy)-essigsäure (MCPA) einschließlich ihrer Salze und Ester	μg/l	0,10	<0,03	DIN 38407-35:2010 ~
4-(4-Chlor-2-methylphenoxy)-buttersäu (MCPB) einschließlich ihrer Salze und Ester	µg/l	0,10	<0,03	DIN 38407-35:2010 ~
2-(4-Chlor-2-methylphenoxy)-propions (Mecoprop, MCPP) einschließlich hrer Salze und Ester	μg/l	0,10	<0,03	DIN 38407-35:2010 ~
Mesosulfuron-methyl	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Metalaxyl-M	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Metamitron	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
Metazachlor	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Metolachlor	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
Metribuzin	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Metsulfuron-methyl	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
Nicosulfuron	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Pethoxamid	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
Propazin	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Propiconazol	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
Simazin	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
Terbuthylazin	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Thiacloprid	µg/l	0,10	<0,03	DIN 38407-36:2014 ~

DR. MED. MILO HALABI MAG. MAG. RER. NAT. FRANZ ZWINGLER

Thiamethoxam	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
Thifensulfuron-methyl	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Tolylfluanid	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Tribenuron-methyl	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Triclopyr	μg/l	0,10	<0,03	DIN 38407-35:2010 ~
Triflusulfuron-methyl	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Tritosulfuron	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Chloridazon-desphenyl (B)	μg/l	3,00	<0,03	DIN 38407-36:2014 ~
Chloridazon-methyl-desphenyl (B-1)	µg/l	3,00	<0,03	DIN 38407-36:2014 ~
Chlorthalonil-Säure (R611965)	μg/l	3,00	<0,03	DIN 38407-36:2014 ~
Chlorthalonil-Sulfonsäure (Chlorthalonilamidsulfonsäure R 417888)	µg/l	3,00	<0,03	DIN 38407-35:2010 ~
Chlorthalonil - R471811 (M4, R7, SYN548766)	µg/l	3,00	<0,03	DIN 38407-35:2010 ~
Flufenacet-Sulfonsäure (Flufenacet ESA, FOE Sulfonsäure, M2)	µg/l	1,00	<0,03	DIN 38407-35:2010 ~
2,6 Dichlorbenzamid	μg/l	3,00	<0,03	DIN 38407-36:2014 ~
Aminomethylphosphonsäure (AMPA)	μg/l	3,00	<0,03	ISO 21458:2008 ~
Metolachlorsäure (OA, CGA 351916, CGA 51202)	μg/l	3,00	<0,03	DIN 38407-35:2010 ~
Metolachlorsulfonsäure (CGA 380168/354743)	μg/l	3,00	<0,03	DIN 38407-35:2010 ~
Metolachlor-NOA 413173	μg/l	3,00	<0,03	DIN 38407-35:2010 ~
N,N-Dimethylsulfamid	μg/l	1,00	<0,03	DIN 38407-35:2010 ~
Metribuzin-Desamino	μg/l	0,30	<0,03	DIN 38407-36:2014 ~
Metazachlorsulfonsäure (BH 479-8)	μg/l	3,00	<0,03	DIN 38407-35:2010 ~
Metazachlorsäure (BH 479-4)	μg/l	3,00	<0,03	DIN 38407-35:2010 ~
2-Amino-4-methoxy-6-methyl-1,3,5-tria (CGA 150829)	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
Atrazin-Desethyl	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Atrazin-Desisopropyl	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Desethyl-desisopropyl-atrazin (DACT)	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Isoproturon-Desmethyl	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Dimethachlorsäure (CGA 50266)	μg/l	0,10	<0,03	DIN 38407-35:2010 ~
Dimethachlorsulfonsäure (CGA 354742)	μg/l	0,10	<0,03	DIN 38407-35:2010 ~
Dimethachlor-CGA 373464	μg/l	0,10	<0,03	DIN 38407-35:2010 ~
Dimethachlor-CGA 369873	μg/l	0,10	<0,03	DIN 38407-35:2010 ~
Propazin-2-Hydroxy (2-Hydroxy-propazin)	µg/l	0,10	<0,03	DIN 38407-36:2014 ~

DR. MED. MILO HALABI MAG. MAG. RER. NAT. FRANZ ZWINGLER

Chemisch-physikalische Analyse Prot. Nr. 2403081-01

Terbuthylazin-Desethyl (Desethylterbuthylazin)	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Terbuthylazin-2-Hydroxy-Desethyl (Desethyl-2-hydroxy-terbuthalyzin)	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Terbuthylazin-2-Hydroxy (2-Hydroxy-terbuthylazin)	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
3,5,6-Trichlor-2-Pyridinol (TPC)	µg/l	0,10	<0,03	DIN 38407-35:2010 ~
Summe Pestizide	µg/l	0,50	<0,03	Berechnet (> BG)
Perfluorbutan-Säure (PFBA, Summe der Isomere)	µg/l	Ng	<0,001	DIN 38407-42:2011-03
Perfluorpentan-Säure (PFPeA, Summe der Isomere)	μg/l		<0,001	DIN 38407-42:2011-03
Perfluorhexan-Säure (PFHxA, Summe der Isomere)	μg/l		<0,001	DIN 38407-42:2011-03
Perfluorheptan-Säure (PFHpA, Summe der Isomere)	μg/l	, ,	<0,001	DIN 38407-42:2011-03
Perfluoroctan-Säure (PFOA, Summe der Isomere)	µg/l	38 5	<0,001	DIN 38407-42:2011-03
Perfluornonan-Säure (PFNA, Summe der Isomere)	µg/l) 1 24	<0,001	DIN 38407-42:2011-03
Perfluordecan-Säure (PFDA, Summe der Isomere)	µg/l		<0,001	DIN 38407-42:2011-03
Perfluorundecan-Säure (PFUnDA, Summe der Isomere)	μg/l		<0,001	DIN 38407-42:2011-03
Perfluordodecan-Säure (PFDoDA, Summe der Isomere)	μg/l	8	<0,001	DIN 38407-42:2011-03
Perfluortridecan-Säure (PFTrDA, Summe der Isomere)	µg/l		<0,001	DIN 38407-42:2011-03
Perfluorbutan-Sulfonsäure PFBS, Summe der Isomere)	µg/l		<0,001	DIN 38407-42:2011-03
Perfluorpentan-Sulfonsäure (PFPeS, Summe der Isomere)	µg/l		<0,001	DIN 38407-42:2011-03
Perfluorhexan-Sulfonsäure PFHxS, Summe der Isomere)	µg/l		<0,001	DIN 38407-42:2011-03
Perfluorheptan-Sulfonsäure PFHpS, Summe der Isomere)	µg/l		<0,001	DIN 38407-42:2011-03
Perfluoroctan-Sulfonsäure PFOS, Summe der Isomere)	µg/l		<0,001	DIN 38407-42:2011-03
Perfluornonan-Sulfonsäure PFNS, Summe der Isomere)	µg/l		<0,001	DIN 38407-42:2011-03
Perfluordecan-Sulfonsäure PFDS, Summe der Isomere)	µg/l	,	<0,001	DIN 38407-42:2011-03
Perfluorundecan-Sulfonsäure PFUnDS, Summe der Isomere)	µg/l		<0,002	DIN 38407-42:2011-03
Perfluordodecan-Sulfonsäure PFDoDS, Summe der Isomere)	µg/l		<0,002	DIN 38407-42:2011-03
Perfluortridecan-Sulfonsäure PFTrDS, Summe der Isomere)	µg/l		<0,003	DIN 38407-42:2011-03
Summe PFAS gemäß EU-TWRL	μg/l		0	DIN 38407-42:2011-03

Allgemeine Hinweise:

DR. MED. MILO HALABI MAG. MAG. RER. NAT. FRANZ ZWINGLER

Chemisch-physikalische Analyse Prot. Nr. 2403081-01

- Ein allfällig zum Einsatz kommender Probenahmeplan wird gemäß DOK_Probenahmepläne umgesetzt.
- Parameterwert entspricht It. Trinkwasserverordnung einem Grenzwert, der Indikatorwert entspricht einem Richtwert.
 Bei den mit *), °) oder ~) nach der Methode versehenen Parametern handelt es sich um bei ITU nicht akkreditierte Methoden. Die Analytik erfolgt in für diese Methoden akkreditierten Partnerlabors. - Für überbrachte Proben gilt, dass die Proben wie erhalten analysiert werden.
- Die Beurteilung der Ergebnisse bezieht sich nur auf die vorliegenden Parameter. Eine Vervielfältigung ist nur mit Zustimmung der ITU erlaubt.
- Messunsicherheit: es wird gemäß ILAC G8 4.2.1 die binäre Entscheidungsregel angewendet.

Bei der Untersuchung auf PFAS durch die AGES Linz nach DIN 38407-42:2011-03 handelt es sich um eine nicht akkreditierte Methode.